Show simple item record

dc.contributor.authorRubio, Rafael M.
dc.date.accessioned2021-09-07T10:17:21Z
dc.date.available2021-09-07T10:17:21Z
dc.date.issued2017
dc.identifier.urihttp://hdl.handle.net/10396/21561
dc.description.abstractThe study of maximal hypersurfaces in Lorentzian manifolds is an interesting mathematical problem, which connects di_erential geometry, nonlinear partial di_erential equations and certain problems in mathematical relativity. One of the more celebrated result in the context of global geometry of maximal hypersurfaces is the Calabi-Bernstein theorem in the Lorentz-Minkowski spacetime. The non-parametric version of this theorem states that the only entire solutions to the maximal hypersurface equation in the Lorentz- Minkowski spacetime are spacelike a_ne hyperplanes. The present work reviews some of the classical and recent proofs of the theorem for the two dimensional case, as well as several extensions for Lorentzian warped products and other relevant spacetimes. On the other hand the problem of uniqueness of complete maximal hypersurfaces is analysed under the perspective of some new results.es_ES
dc.format.mimetypeapplication/pdfes_ES
dc.language.isoenges_ES
dc.publisherSpringeres_ES
dc.rightshttps://creativecommons.org/licenses/by-nc-nd/4.0/es_ES
dc.sourceRubio R.M. (2017) Calabi–Bernstein-Type Problems in Lorentzian Geometry. In: Cañadas-Pinedo M., Flores J., Palomo F. (eds) Lorentzian Geometry and Related Topics. GELOMA 2016. Springer Proceedings in Mathematics & Statistics, vol 211. Springer, Cham.es_ES
dc.subjectMaximal hypersurfaces in spacetimeses_ES
dc.subjectCalabi–Bernstein type problemses_ES
dc.subjectLorentzian geometryes_ES
dc.titleCalabi-Bernstein type problems in Lorentzian Geometryes_ES
dc.typeinfo:eu-repo/semantics/bookPartes_ES
dc.relation.publisherversionhttps://doi.org/10.1007/978-3-319-66290-9_12es_ES
dc.relation.projectIDGobierno de España. MTM2016-78807-C2-1-Pes_ES
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses_ES


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record