• español
    • English
  • English 
    • español
    • English
  • Login
View Item 
  •   DSpace Home
  • Producción Científica
  • Departamento de Ciencia de la Computación e Inteligencia Artificial
  • DIAN-Artículos, capítulos, libros...
  • View Item
  •   DSpace Home
  • Producción Científica
  • Departamento de Ciencia de la Computación e Inteligencia Artificial
  • DIAN-Artículos, capítulos, libros...
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

A hybrid dynamic exploitation barebones particle swarm optimisation algorithm for time series segmentation

Thumbnail
View/Open
a_hybrid_dynamic_exploitation_barebones.pdf (649.8Kb)
Author
Durán Rosal, Antonio Manuel
Gutiérrez-Peña, Pedro Antonio
Carmona Poyato, Ángel
Hervás-Martínez, César
Publisher
Elsevier
Date
2019
Subject
Time series size reduction
Time series segmentation
Particle swarm optimisation
Hybrid algorithm
METS:
Mostrar el registro METS
PREMIS:
Mostrar el registro PREMIS
Metadata
Show full item record
Abstract
This paper proposes new methods based on time series segmentation, including the adaptation of the particle swarm optimisation algorithm (PSO) to this problem, and more advanced PSO versions, such as barebones PSO (BBPSO) and its exploitation version (BBePSO). Moreover, a novel algorithm is derived, referred to as dynamic exploitation barebones PSO (DBBePSO), which updates the importance of the social and cognitive components throughout the generations. All these algorithms are further improved by considering a final local search step based on the combination of two well-known standard segmentation algorithms (Bottom-Up and Top-Down). The performance of the different methods is evaluated using 15 time series from various application fields, and the results show that the novel algorithm (DBBePSO) and its hybrid version (HDBBePSO) outperform the rest of segmentation techniques.
URI
http://hdl.handle.net/10396/26703
Fuente
Durán-Rosal, A. M., Gutiérrez, P. A., Carmona-Poyato, A., & Hervás‐Martínez, C. (2019). A hybrid dynamic exploitation barebones particle swarm optimisation algorithm for time series segmentation. Neurocomputing, 353, 45-55. https://doi.org/10.1016/j.neucom.2018.05.129
Versión del Editor
https://doi.org/10.1016/j.neucom.2018.05.129
Collections
  • Artículos, capítulos, libros...UCO
  • DIAN-Artículos, capítulos, libros...

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
© Biblioteca Universidad de Córdoba
Biblioteca  UCODigital
 

 

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

LoginRegister

Statistics

View Usage Statistics

De Interés

Archivo Delegado/AutoarchivoAyudaPolíticas de Helvia

Compartir


DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
© Biblioteca Universidad de Córdoba
Biblioteca  UCODigital