• español
    • English
  • English 
    • español
    • English
  • Login
View Item 
  •   DSpace Home
  • Producción Científica
  • Departamento de Bromatología y Tecnología de los Alimentos
  • DBTA-Artículos, capítulos, libros...
  • View Item
  •   DSpace Home
  • Producción Científica
  • Departamento de Bromatología y Tecnología de los Alimentos
  • DBTA-Artículos, capítulos, libros...
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Setting up a methodology to distinguish between green oranges and leaves using hyperspectral imaging

Thumbnail
View/Open
setting_up_a_methodology.pdf (1.266Mb)
Author
Torres, Irina
Sánchez, María-Teresa
Cho, Byoung-Kwan
Garrido-Varo, Ana
Pérez-Marín, D.C.
Publisher
Elsevier
Date
2019
Subject
Orange
Harvest yield
Defect detection
Hyperspectral and multispectral imaging
METS:
Mostrar el registro METS
PREMIS:
Mostrar el registro PREMIS
Metadata
Show full item record
Abstract
The estimation of green citrus fruit yield is a key parameter for growers and the industry. The early estimation of orange yield at the immature green stage could influence the future market price and allow producers to plan the harvest in advance, thus reducing costs. This research can be considered as a preliminary step for designing low-cost spectral cameras capable of being mounted on unmanned aerial vehicles (UAVs) to estimate orange yield and defects. Images were acquired from oranges and leaves from an orchard in Jeju Island (Jeju, Republic of Korea), using two hyperspectral reflectance imaging systems, one working in the range 400–1000 nm (visible/near infrared, Vis/NIR) and the other between 900 and 2500 nm (short-wave infrared, SWIR). The main objective of the research was to set up a methodology to select the relevant bands - from the two spectral ranges studied - to distinguish between green oranges and leaves and to detect defects, which will allow citrus yield to be estimated. Analysis of variance (ANOVA) and principal component analysis (PCA) were used to select the key wavelengths for this purpose; next, a band ratio coupled with a simple thresholding method was applied. This study showed that the Vis/NIR hyperspectral imaging correctly classified 96.97% and 92.93% of the pixels, respectively, to distinguish between green oranges and leaves and to detect defects, while with the SWIR system, the percentage of pixels correctly classified for these two objectives were 74.79% and 89.31%, respectively. These results confirm that it is possible to use a low number of wavelengths to estimate harvest yield in oranges, which could pave the way for the future development of low-cost and low-weight equipment for the detection of green and sound fruit.
URI
http://hdl.handle.net/10396/27827
Fuente
Torres, I., Sánchez, M.T., Cho, B.K, Garrido‐Varo, A., & Pérez‐Marín, D. (2019). Setting up a methodology to distinguish between green oranges and leaves using hyperspectral imaging. Computers And Electronics In Agriculture, 167, 105070. https://doi.org/10.1016/j.compag.2019.105070
Versión del Editor
https://doi.org/10.1016/j.compag.2019.105070
Collections
  • DPA-Artículos, capítulos, libros...
  • Artículos, capítulos, libros...UCO
  • DBTA-Artículos, capítulos, libros...

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
© Biblioteca Universidad de Córdoba
Biblioteca  UCODigital
 

 

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

LoginRegister

Statistics

View Usage Statistics

De Interés

Archivo Delegado/AutoarchivoAyudaPolíticas de Helvia

Compartir


DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
© Biblioteca Universidad de Córdoba
Biblioteca  UCODigital